If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x=100=
We move all terms to the left:
2x^2-20x-(100)=0
a = 2; b = -20; c = -100;
Δ = b2-4ac
Δ = -202-4·2·(-100)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{3}}{2*2}=\frac{20-20\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{3}}{2*2}=\frac{20+20\sqrt{3}}{4} $
| 19=1+6x | | 6x+37=10x-3 | | 6p+7=97 | | 18=4m=41 | | 6p+7=87 | | -2=4-3u | | -12=4(2d-3) | | E^(5x-2)=30 | | x^2-69x+69=0 | | 1-3c=7 | | 7k^2=-24-29k | | C(x)=10x+15 | | 3(2f-2)=18 | | x2+5-6=12 | | -1/4x=-3/2 | | 4(-5+7x)=-104 | | -5+5x=(1-6) | | -1(1d+5)=11.4 | | 3x-1=-24 | | 25/75=x/15 | | X+15=-2x | | 50=4x-6x | | 210/3+x=113 | | 1/2+n=5/8 | | 9q+10=108 | | 8h+2=3h+12 | | 11x-2x=36 | | 8h+2=3h+ | | 25+0.15p=0.4p | | d+-47=84 | | 9x-45=135 | | -y+5.3=6.2y-3.7 |